Innervation of rat and human dura mater and pericranial tissues in the parieto-temporal region by meningeal afferents.
نویسندگان
چکیده
OBJECTIVE To reinvestigate the innervation pattern of the dura mater of rat and human middle cranial fossa, the morpho-functional substrate of headache generation, and adjacent extracranial tissues with neuronal in vitro tracing. BACKGROUND This study was initiated by recent structural and functional findings of meningeal afferent fibers which innervate the cranial dura mater and may project to extracranial tissues. METHODS Anterograde and retrograde neuronal in vitro tracing was made in formaldehyde fixed hemisected rat and human skulls. The fluorescent tracer DiI was applied to proximally cut meningeal nerves in rat and to distal branches of the spinosus nerve in human calvaria lined by dura mater. After several weeks, the dura mater and deep extracranial tissues were examined with fluorescence microscopy. RESULTS In addition to a network of meningeal nerve fibers, several fiber bundles were observed, leaving the skull through emissary canals and fissures to innervate the pericranial temporal, parietal, and occipital periosteum. Traced fibers were seen spreading into deep layers of the temporal and upper neck muscles. Retrograde neuronal tracing revealed labeled cell bodies exclusively in the mandibular and maxillary division of the rat trigeminal ganglion, and centrally projecting fibers were identified in the spinal trigeminal tract. Electron microscopy of the cross-sected spinosus nerve showed myelinated and unmyelinated axons with similar numbers in human and rat. CONCLUSIONS We conclude that a proportion of meningeal afferents innervates extracranial tissues like periosteum and pericranial muscles via collaterals projecting through the skull. These afferents may be nociceptive, some may subserve proprioceptive functions. The finding of extracranial projections of meningeal afferents may be important for our understanding of extracranial impacts on headache generation and therapy.
منابع مشابه
Macroscopic Innervation of the Dura Mater Covering the Middle Cranial Fossa in Humans Correlated to Neurovascular Headache
The trigeminovascular system within the cranial dura mater is a possible cause of headaches. The aim of this study is to investigate macroscopically dural innervation around the middle meningeal artery (MMA) in the middle cranial fossa. Forty-four sides of the cranial dura overlying the skull base obtained from 24 human cadavers were stained using Sihler's method. Overall, the nervus spinosus (...
متن کاملNeurobiology of Disease Neurons of the Dopaminergic/Calcitonin Gene-Related Peptide A11 Cell Group Modulate Neuronal Firing in the Trigeminocervical Complex: An Electrophysiological and Immunohistochemical Study
Activation of spinal trigeminal afferents innervating the cranial vasculature is likely to play a role in migraine, although some parts of the clinical presentation may have a dopaminergic basis. The A11 nucleus, located in the posterior hypothalamus, provides the only known source of descending dopaminergic innervation for the spinal gray matter. Extracellular recordings were made in the trige...
متن کاملHydrogen Sulfide Mediating both Excitatory and Inhibitory Effects in a Rat Model of Meningeal Nociception and Headache Generation
BACKGROUND/PURPOSE Hydrogen sulfide (H2S) is a neuromodulator acting through nitroxyl (HNO) when it reacts with nitric oxide (NO). HNO activates transient receptor potential channels of the ankyrin type 1 (TRPA1) causing release of calcitonin gene-related peptide from primary afferents. Activation of meningeal nociceptors projecting to the human spinal trigeminal nucleus (STN) may lead to heada...
متن کاملCortical Spreading Depression Promotes Persistent Mechanical Sensitization of Intracranial Meningeal Afferents: Implications for the Intracranial Mechanosensitivity of Migraine
Migraine is one of the most common and disabling diseases in the world. A major feature of migraine headache is its aggravation by maneuvers that momentarily increase intracranial pressure. A key hypothesis implicates mechanical sensitization of trigeminal afferents that innervate the intracranial meninges in mediating this feature of migraine. However, whether such pain-related neural response...
متن کاملActivity-dependent sensory signal processing in mechanically responsive slowly conducting meningeal afferents.
Activity-dependent processes in slowly conducting afferents have been shown to modulate conduction and receptive properties, but it is not known how the frequency of action potential firing determines the responses of such fibers to mechanical stimulation. We examined the responses of slowly conducting meningeal afferents to mechanical stimuli and the influence of preceding action potential act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Headache
دوره 54 6 شماره
صفحات -
تاریخ انتشار 2014